Classification of integrability and non-integrability for some quantum spin chains

Mizuki Yamaguchi

(The University of Tokyo)

Dec. 3rd, 2024 @BIMSA (online)

Contents

Introduction

```
Spin-1/2 systems [arXiv:2411.02162]
Result
Proof preliminary
Proof idea
Proof
```

Spin-1 systems [arXiv:2411.04945]

Discussion

We characterize (non-)integrable systems by the number of local conserved quantities

We characterize (non-)integrable systems by the number of local conserved quantities

(spatially) k-local quantity:

A sum of operators acting on l consecutive sites with $l \leq k$

ex.)
$$\sum_{i=1}^{N} \sigma_{i}^{x} \sigma_{i+1}^{y} \sigma_{i+2}^{z}$$
: 3-local $\sum_{i=1}^{N} \sigma_{i}^{z} \sigma_{i+4}^{x}$: 5-local $\sum_{i=1}^{N} \sigma_{i}^{z} \sigma_{i+4}^{x}$: $\sum_{i=1}^{N} \sigma_{i}^{z} \sigma_{i+4}^{x}$

We characterize (non-)integrable systems by the number of local conserved quantities

(spatially) k-local quantity:

A sum of operators acting on l consecutive sites with $l \leq k$

ex.)
$$\sum_{i=1}^{N} \sigma_{i}^{x} \sigma_{i+1}^{y} \sigma_{i+2}^{z}$$
: 3-local $\sum_{i=1}^{N} \sigma_{i}^{z} \sigma_{i+4}^{x}$: 5-local $\sum_{i=1}^{N} \sigma_{i}^{z} \sigma_{i+4}^{x}$: $\sum_{i=1}^{N} \sigma_{i+4}^{z} \sigma_{i+4}^{x}$: $\sum_{i=1}^{N} \sigma_{i+4}^{x} \sigma_{i+4}^{x}$: $\sum_{i=1}^{N} \sigma_{i+4}^{x} \sigma_{i+4}^{x}$: $\sum_{i=1}^{N} \sigma_{i+4}^{x} \sigma_{i+4}^{x} \sigma_{i+4}^{x}$: $\sum_{i=1}^{N} \sigma_{i$

Local conserved quantity:

An O(1)-local quantity which commutes with H

ex.)
$$Q = \sum_{i=1}^{N} \vec{\sigma}_i \cdot (\vec{\sigma}_{i+1} \times \vec{\sigma}_{i+2})$$
 for $H = \sum_{i=1}^{N} \vec{\sigma}_i \cdot \vec{\sigma}_{i+1}$

We characterize (non-)integrable systems by the number of local conserved quantities

of local conserved quantities

 ∞ Integrable systems

(excluding trivial ones)

Non-integrable systems

We characterize (non-)integrable systems by the number of local conserved quantities

of local conserved quantities

∞ Integrable systems

Partially integrable systems

(excluding trivial ones)

Non-integrable systems

Most systems are non-integrable

It is strongly expected that **non-integrability is ubiquitous**

- Consistency with empirical laws of macro. systems (linear response theory, thermalization, heat conduction, etc.)
- Numerical simulations (energy spectra)

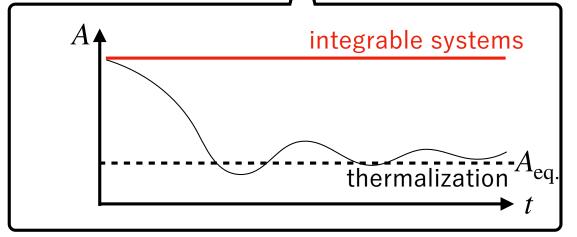
Most systems are non-integrable

It is strongly expected that **non-integrability is ubiquitous**

- Consistency with empirical laws of macro. systems

(linear response theory, thermalization, heat conduction, etc.)

- Numerical simulations (energy spectra)



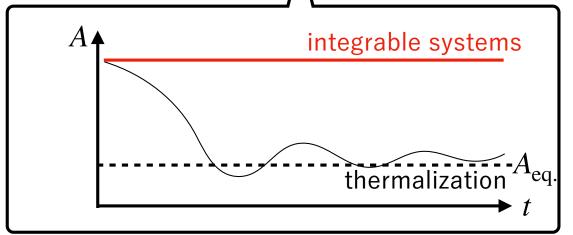
Most systems are non-integrable

It is strongly expected that **non-integrability is ubiquitous**

Consistency with empirical laws of macro. systems

(linear response theory, thermalization, heat conduction, etc.)

- Numerical simulations (energy spectra)



But rigorous treatment of non-integrability is difficult... (It was out of scope of mathematical physics until 2019)

Proof of non-integrability

Recently, some models were shown to be non-integrable

XYZh model [Shiraishi (2019)]

$$H = \sum_{i=1}^{N} (J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + J_Z Z_i Z_{i+1} + h Z_i)$$

is non-integrable if $J_X, J_Y, J_Z \neq 0, J_X \neq J_Y, h \neq 0$

Proof of non-integrability

Recently, some models were shown to be non-integrable

XYZh model [Shiraishi (2019)]

$$H = \sum_{i=1}^{N} (J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + J_Z Z_i Z_{i+1} + h Z_i)$$

is non-integrable if $J_X, J_Y, J_Z \neq 0, J_X \neq J_Y, h \neq 0$

Mixed-field Ising model [Chiba (2024)]

$$H = \sum_{i=1}^{N} (Z_i Z_{i+1} + h_X X_i + h Z_i)$$

is non-integrable if $h_X \neq 0, h_Z \neq 0$

Proof of non-integrability

Recently, some models were shown to be non-integrable

XYZh model [Shiraishi (2019)]

$$H = \sum_{i=1}^{N} (J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + J_Z Z_i Z_{i+1} + h Z_i)$$

is non-integrable if $J_X, J_Y, J_Z \neq 0, J_X \neq J_Y, h \neq 0$

Mixed-field Ising model [Chiba (2024)]

$$H = \sum_{i=1}^{N} (Z_i Z_{i+1} + h_X X_i + h Z_i)$$

is non-integrable if $h_x \neq 0, h_z \neq 0$

PXP model

[Park, Lee (arXiv:2403)] **| |**[Shiraishi (2024)]

n.n.n. Heisenberg model

Research question

Non-integrability proof studies have begun, but these studies have dealt with individual systems

Classification of integrability and non-integrability for **general classes** is still lacking

It is not proved that **non-integrability is ubiquitous**

Contents

Introduction

```
Spin-1/2 systems
Result
Proof preliminary
Proof idea
Proof
```

Spin-1 systems

Discussion

Model

General spin-1/2 chains with symmetric n.n. interaction

$$H = \sum_{i=1}^{N} \left(\sum_{\alpha,\beta} J_{\alpha\beta} \sigma_i^{\alpha} \sigma_{i+1}^{\beta} + \sum_{\alpha} h_{\alpha} \sigma_i^{\alpha} \right)$$

with
$$J_{\alpha\beta} = J_{\beta\alpha}$$

Model

General spin-1/2 chains with symmetric n.n. interaction

$$H = \sum_{i=1}^{N} \begin{pmatrix} J_{XX} X_{i} X_{i+1} + J_{XY} X_{i} Y_{i+1} + J_{XZ} X_{i} Z_{i+1} \\ + J_{YX} Y_{i} X_{i+1} + J_{YY} Y_{i} Y_{i+1} + J_{YZ} Y_{i} Z_{i+1} \\ + J_{ZX} Z_{i} X_{i+1} + J_{ZY} Z_{i} Y_{i+1} + J_{ZZ} Z_{i} Z_{i+1} \\ h_{X} X_{i} + h_{Y} Y_{i} + h_{Z} Z_{i} \end{pmatrix}$$

(Abbreviation: $\sigma_i^x \to X_i$ etc.)

with
$$J_{\alpha\beta} = J_{\beta\alpha}$$

Model

General spin-1/2 chains with symmetric n.n. interaction

$$H = \sum_{i=1}^{N} \begin{pmatrix} J_{XX} X_{i} X_{i+1} + J_{XY} X_{i} Y_{i+1} + J_{XZ} X_{i} Z_{i+1} \\ + J_{YX} Y_{i} X_{i+1} + J_{YY} Y_{i} Y_{i+1} + J_{YZ} Y_{i} Z_{i+1} \\ + J_{ZX} Z_{i} X_{i+1} + J_{ZY} Z_{i} Y_{i+1} + J_{ZZ} Z_{i} Z_{i+1} \\ h_{X} X_{i} + h_{Y} Y_{i} + h_{Z} Z_{i} \end{pmatrix}$$

(Abbreviation: $\sigma_i^x \to X_i$ etc.)

with $J_{\alpha\beta} = J_{\beta\alpha}$

Including:

- -Integrable systems: Heisenberg, Transverse-field Ising, etc.
- -Non-integrable systems: XYZh, Mixed-field Ising

Result

Main Theorem [Yamaguchi, Chiba, Shiraishi arXiv:2411.02162] All models in this class are non-integrable (do not have nontrivial local conserved quantities), (nontrivial: $k \ge 3$) except for known integrable systems and their equivalents

Result

Main Theorem [Yamaguchi, Chiba, Shiraishi arXiv:2411.02162] All models in this class are non-integrable (do not have nontrivial local conserved quantities), (nontrivial: $k \ge 3$) except for known integrable systems and their equivalents

Implications

- Ubiquitousness of non-integrability
- No overlooked integrable systems
- No partially integrable systems

Contents

Introduction

Spin-1/2 systems
Result
Proof preliminary
Proof idea
Proof

Spin-1 systems

Discussion

Global spin rotation

$$H = \sum_{i=1}^{N} \left(\begin{pmatrix} J_{XX} X_{i} X_{i+1} + J_{XY} X_{i} Y_{i+1} + J_{XZ} X_{i} Z_{i+1} \\ + J_{YX} Y_{i} X_{i+1} + J_{YY} Y_{i} Y_{i+1} + J_{YZ} Y_{i} Z_{i+1} \\ + J_{ZX} Z_{i} X_{i+1} + J_{ZY} Z_{i} Y_{i+1} + J_{ZZ} Z_{i} Z_{i+1} \end{pmatrix} + (h_{X} X_{i} + h_{Y} Y_{i} + h_{Z} Z_{i}) \right)$$

$$\text{with } J_{\alpha\beta} = J_{\beta\alpha}$$

Global spin rotation

$$J=egin{pmatrix} J_{XX} & J_{XY} & J_{XZ} \ J_{YX} & J_{YY} & J_{YZ} \ J_{ZX} & J_{ZY} & J_{ZZ} \end{pmatrix}$$
 can be diagonalized

by global spin rotation $\begin{pmatrix} X' \\ Y' \\ Z' \end{pmatrix} = R \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$, because J is real symmetric

$$H = \sum_{i=1}^{N} \left(\begin{pmatrix} J_{XX} X_{i} X_{i+1} + J_{XY} X_{i} Y_{i+1} + J_{XZ} X_{i} Z_{i+1} \\ + J_{YX} Y_{i} X_{i+1} + J_{YY} Y_{i} Y_{i+1} + J_{YZ} Y_{i} Z_{i+1} \\ + J_{ZX} Z_{i} X_{i+1} + J_{ZY} Z_{i} Y_{i+1} + J_{ZZ} Z_{i} Z_{i+1} \end{pmatrix} + (h_{X} X_{i} + h_{Y} Y_{i} + h_{Z} Z_{i}) \right)$$

with $J_{\alpha\beta} = J_{\beta\alpha}$

Global spin rotation

$$J=egin{pmatrix} J_{XX} & J_{XY} & J_{XZ} \ J_{YX} & J_{YY} & J_{YZ} \ J_{ZX} & J_{ZY} & J_{ZZ} \end{pmatrix}$$
 can be diagonalized

by global spin rotation $\begin{pmatrix} X' \\ Y' \\ Z' \end{pmatrix} = R \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$, because J is real symmetric

$$H = \sum_{i=1}^{N} \left(\begin{pmatrix} J_{XX} X_{i} X_{i+1} + J_{XY} X_{i} Y_{i+1} + J_{XZ} X_{i} Z_{i+1} \\ + J_{YX} Y_{i} X_{i+1} + J_{YY} Y_{i} Y_{i+1} + J_{YZ} Y_{i} Z_{i+1} \\ + J_{ZX} Z_{i} X_{i+1} + J_{ZY} Z_{i} Y_{i+1} + J_{ZZ} Z_{i} Z_{i+1} \end{pmatrix} + (h_{X} X_{i} + h_{Y} Y_{i} + h_{Z} Z_{i}) \right)$$

with
$$J_{\alpha\beta} = J_{\beta\alpha}$$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + J_Z Z_i Z_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right)$$

Division into cases

We treat H separately, depending on rank of J

(the number of nonzero elements in $\{J_X, J_Y, J_Z\}$)

rank 0:
$$H = \sum_{i=1}^{N} h_{Z}Z_{i}$$

with $J_X, J_Y, J_Z \neq 0$

rank 1:
$$H = \sum_{i=1}^{N} (J_{Z}Z_{i}Z_{i+1} + h_{X}X_{i} + h_{Z}Z_{i})$$

rank 2:
$$H = \sum_{i=1}^{N} (J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i)$$

rank 3:
$$H = \sum_{i=1}^{N} (J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + J_Z Z_i Z_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i)$$

Classification table

Integrable of

or

rank

H

detail conditions

Non-integrable

0	$\sum_{i=1}^{N} h_Z Z_i$		(trivial)
1	$\sum_{i=1}^{N} \begin{pmatrix} J_Z Z_i Z_{i+1} \\ +h_X X_i \\ +h_Z Z_i \end{pmatrix}$	$h_X = 0$	(trivial)
		$h_X \neq 0, h_Z = 0$	transverse field Ising
		$h_X \neq 0, h_Z \neq 0$	N [Chiba]
2	$\sum_{i=1}^{N} \begin{pmatrix} J_{X}X_{i}X_{i+1} \\ +J_{Y}Y_{i}Y_{i+1} \\ +h_{X}X_{i} \\ +h_{Z}Z_{i} \\ +h_{Z}Z_{i} \end{pmatrix}$	$(h_X, h_Y) = (0,0)$	I XY
		$(h_X, h_Y) \neq (0,0)$	N our result

Classification table

Integrable

or

rank

H

detail conditions

Non-integrable

3	$\sum_{i=1}^{N} \begin{pmatrix} J_X X_i X_{i+1} \\ + J_Y Y_i Y_{i+1} \\ + J_Z Z_i Z_{i+1} \\ + h_X X_i \\ + h_Z Z_i \\ + h_Z Z_i \end{pmatrix}$	$J_X = J_Y = J_Z$		XXX (Heisenberg)
		$J_X = J_Y eq J_Z$ (two are equal)	$(h_X, h_Y) = (0,0)$	I XXZ
			$(h_X, h_Y) \neq (0,0)$	N our result
		J_X,J_Y,J_Z all different	$(h_X, h_Y, h_Z) = \vec{0}$	I XYZ
			$(h_X, h_Y, h_Z) \neq \vec{0}$	N our result

Contents

Introduction

Spin-1/2 systems
Result
Proof preliminary
Proof idea

Spin-1 systems

Proof

Discussion

[Shiraishi (2019)]

Expansion of general local quantity

$$Q = \sum_{\mathbb{A}} q_{\mathbb{A}} \mathbb{A} \qquad (\{\mathbb{A}\}: \text{ basis of local quantities})$$

[Shiraishi (2019)]

Expansion of general local quantity

$$Q = \sum_{\mathbb{A}} q_{\mathbb{A}}$$
 ({A}: basis of local quantities)
$$\{\mathbb{B}\}$$

$$[Q,H] = \sum_{\mathbb{B}} r_{\mathbb{B}} \mathbb{B}$$

[Shiraishi (2019)]

Expansion of general local quantity

$$Q = \sum_{\mathbb{A}} q_{\mathbb{A}}$$
 ({A}: basis of local quantities) {B}
$$[Q,H] = \sum_{\mathbb{R}} r_{\mathbb{B}} \mathbb{B} \qquad r_{\mathbb{B}} \text{: linear combination of } \{q_{\mathbb{A}}\}$$

[Shiraishi (2019)]

Expansion of general local quantity

$$Q = \sum_{\mathbb{A}} q_{\mathbb{A}} \qquad \qquad (\{\mathbb{A}\}: \text{basis of local quantities}) \\ \{\mathbb{B}\}: \\ [Q,H] = \sum_{\mathbb{B}} r_{\mathbb{B}} \mathbb{B} \qquad r_{\mathbb{B}}: \text{ linear combination of } \{q_{\mathbb{A}}\}: \mathbf{P} \in \mathbb{B}$$

Conservation condition: $r_{\mathbb{B}} = 0$ for all \mathbb{B}

A system of linear equations of $\{q_{\mathbb{A}}\}$

[Shiraishi (2019)]

Expansion of general local quantity

$$Q = \sum_{\mathbb{A}} q_{\mathbb{A}}$$
 ({A}: basis of local quantities) {B}
$$[Q,H] = \sum_{\mathbb{B}} r_{\mathbb{B}}$$
 $r_{\mathbb{B}}$: linear combination of $\{q_{\mathbb{A}}\}$

Conservation condition: $r_{\mathbb{B}} = 0$ for all \mathbb{B}

A system of linear equations of $\{q_{\mathbb{A}}\}$

Non-integrability

- = Absence of (nontrivial) local conserved quantity Q
- = Absence of (nontrivial) solution to the equations of $\{q_{\mathbb{A}}\}$

Basis of local quantities

Basis of local quantities $\{A\} =$ **local Pauli strings**

Pauli string: tensor product of Pauli operator of each site

$$\bigotimes_{i=1}^{N} \{X_i, Y_i, Z_i, I_i\}$$

Basis of local quantities

Basis of local quantities $\{A\} =$ **local Pauli strings**

Pauli string: tensor product of Pauli operator of each site

$$\bigotimes_{i=1}^{N} \{X_i, Y_i, Z_i, I_i\}$$

ex.) Basis of 1-local quantities

$$I$$
, $X_i, Y_i, Z_i : A_i^1$ for each i

Basis of local quantities

Basis of local quantities $\{A\} =$ **local Pauli strings**

Pauli string: tensor product of Pauli operator of each site

$$\bigotimes_{i=1}^{N} \{X_i, Y_i, Z_i, I_i\}$$

ex.) Basis of 2-local quantities

$$I,$$
 $X_i, Y_i, Z_i : A_i^1$ for each i $X_i X_{i+1}, X_i Y_{i+1}, \dots, Z_i Z_{i+1} : A_i^2$

Basis of local quantities

Basis of local quantities $\{A\} =$ **local Pauli strings**

Pauli string: tensor product of Pauli operator of each site

$$\bigotimes_{i=1}^{N} \{X_i, Y_i, Z_i, I_i\}$$

ex.) Basis of 3-local quantities

$$I, \qquad X_i, Y_i, Z_i : A_i^1 \qquad \text{for each } i$$

$$X_i X_{i+1}, X_i Y_{i+1}, \dots, Z_i Z_{i+1} : A_i^2$$

$$X_i X_{i+1} X_{i+2}, X_i X_{i+1} Y_{i+2}, \dots, Z_i I_{i+1} Z_{i+2} : A_i^3$$

How is the linear map $[\bullet, H]$ represented?

ex.)
$$[X_i Y_{i+1} Z_{i+2}, Y_{i-1} Y_i]$$

How is the linear map $[\bullet, H]$ represented?

ex.)
$$[X_{i} Y_{i+1} Z_{i+2}, Y_{i-1} Y_{i}]$$

$$= Y_{i-1} [X_{i}, Y_{i}] Y_{i} Z_{i+2}$$

$$= +2i Y_{i-1} Z_{i} Y_{i} Z_{i+2}$$

Commutators of Pauli strings are other Pauli strings (or 0)

How is the linear map $[\bullet, H]$ represented?

ex.)
$$[X_{i} Y_{i+1} Z_{i+2}, Y_{i-1} Y_{i}]$$

$$= Y_{i-1} [X_{i}, Y_{i}] Y_{i} Z_{i+2}$$

$$= +2i Y_{i-1} Z_{i} Y_{i} Z_{i+2}$$

Commutators of Pauli strings are other Pauli strings (or 0)

Column expression of this commutator:

$$X_i$$
 Y_{i+1} Z_{i+2} Y_{i-1} Y_i

$$+2i$$
 Y_{i-1} Z_i Y_{i+1} Z_{i+2}

How is the linear map $[\bullet, H]$ represented?

Commutators of Pauli strings are other Pauli strings (or 0)

Column expression of this commutator:

$$X_i$$
 Y_{i+1} Z_{i+2} : A_i^3 Y_{i-1} Y_i

$$+2i \quad Y_{i-}$$

$$+2i$$
 Y_{i-1} Z_i Y_{i+1} Z_{i+2}

Expansion of general k-local quantity

$$Q = \sum_{l=1}^k \sum_{A_i^l} q_{A_i^l} A_i^l \qquad (\{A_i^l\}: \text{ basis of local quantities})$$

$$\{B_i^l\}: \text{ linear map}$$

$$[Q, H] = \sum_{l=1}^{k+1} \sum_{B_i^l} r_{B_i^l} B_i^l \qquad r_{B_i^l}: \text{ linear combination of } \{q_{A_i^l}\}: \text{ Conservation condition} : r_{D_i} = 0 \text{ for all } B_i^l:$$

Conservation condition: $r_{\mathbf{B}_i^l} = 0$ for all \mathbf{B}_i^l

A system of linear equations of $\{q_{A_i}\}$

Non-integrability

- = Absence of (nontrivial) local conserved quantity Q
- = Absence of (nontrivial) solution to the equations of $\{q_{A_i^l}\}$

We will prove $q_{A_i^k} = 0$ for all A_i^k for k-local conserved quantity Q

$$Q = \sum_{A_{i}^{1}} q_{A_{i}^{1}} A_{i}^{1}$$

$$+ \sum_{A_{i}^{2}} q_{A_{i}^{2}} A_{i}^{2}$$

$$+ \sum_{A_{i}^{3}} q_{A_{i}^{3}} A_{i}^{3}$$

$$+ \cdots$$

$$+ \sum_{A_{i}^{k-1}} q_{A_{i}^{k-1}} A_{i}^{k-1}$$

$$+ \sum_{A_{i}^{k}} q_{A_{i}^{k}} A_{i}^{k}$$

k-local conserved quantity

We will prove $q_{A_i^k} = 0$ for all A_i^k for k-local conserved quantity Q

$$Q = \sum_{A_{i}^{1}} q_{A_{i}^{1}} A_{i}^{1}$$

$$+ \sum_{A_{i}^{2}} q_{A_{i}^{2}} A_{i}^{2}$$

$$+ \sum_{A_{i}^{3}} q_{A_{i}^{3}} A_{i}^{3}$$

$$+ \cdots$$

$$+ \sum_{A_{i}^{k-1}} q_{A_{i}^{k-1}} A_{i}^{k-1}$$

$$+ \sum_{A_{i}^{k}} \bigcap A_{i}^{k}$$

k-local conserved quantity

We will prove $q_{A_i^k} = 0$ for all A_i^k for k-local conserved quantity Q

$$Q = \sum_{A_{i}^{1}} q_{A_{i}^{1}} A_{i}^{1}$$

$$+ \sum_{A_{i}^{2}} q_{A_{i}^{2}} A_{i}^{2}$$

$$+ \sum_{A_{i}^{3}} q_{A_{i}^{3}} A_{i}^{3}$$

$$+ \cdots$$

$$+ \sum_{A_{i}^{k-1}} q_{A_{i}^{k-1}} A_{i}^{k-1}$$

$$+ \sum_{A_{i}^{k}} \bigcap A_{i}^{k}$$

k-local conserved quantity

absent (for general $3 \le k \le N/2$)

We will prove $q_{A_i^k} = 0$ for all A_i^k for k-local conserved quantity Q

$$Q = \sum_{A_i^1} q_{A_i^1} A_i^1 + \sum_{A_i^2} q_{A_i^2} A_i^2$$

trivial local conserved quantity $(k \le 2, \text{ such as } H)$

absent (for general $3 \le k \le N/2$)

Contents

Introduction

Spin-1/2 systems

Result

Proof preliminary

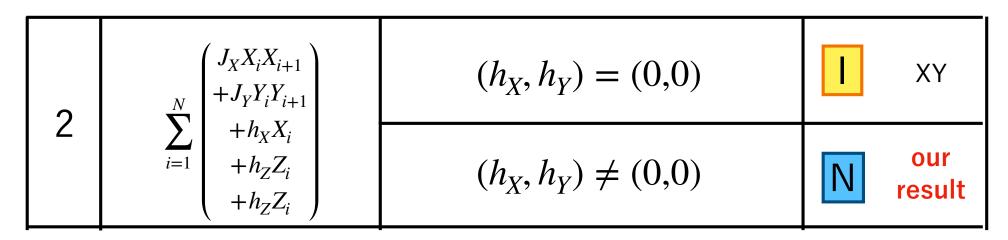
Proof idea

Proof

Spin-1 systems

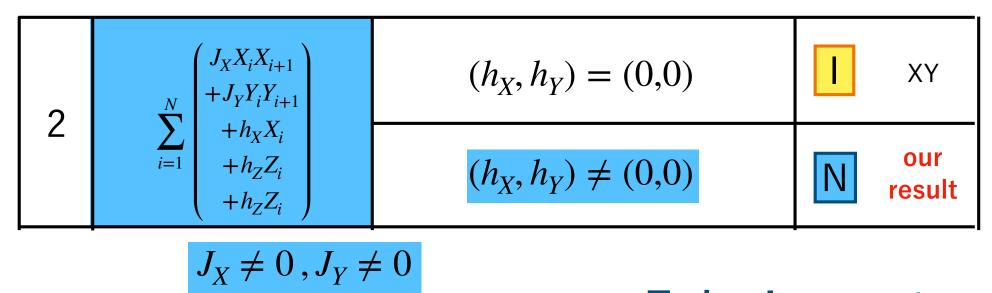
Discussion

Proof



$$J_X \neq 0, J_Y \neq 0$$

Proof



Today I present the proof of rank 2

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

We can immediately show that $A^k = Z \stackrel{\text{any}}{\longleftrightarrow} X$ has zero coeff.

$$A_i^k$$
: $Z_i \cdots X_{i+k-1}$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

We can immediately show that $A^k = Z \stackrel{\text{any}}{\longleftrightarrow} X$ has zero coeff.

$$A_i^k$$
: Z_i ... X_{i+k-1} ... Y_{i+k-1} ... Y_{i+k-1} ... Y_{i+k} ... Y_{i+k-1} ... Y_{i+k}

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

We can immediately show that $A^k = Z \stackrel{\text{any}}{\longleftrightarrow} X$ has zero coeff.

$$m{A}_{i}^{k}$$
: $m{Z}_{i}$... $m{X}_{i+k-1}$ $m{Y}_{i+k-1}$ $m{Y}_{i+k}$ $m{B}_{i}^{k+1}$: $m{+2i}$ $m{Z}_{i}$... $m{Z}_{i+k-1}$ $m{Y}_{i+k}$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

We can immediately show that $A^k = Z \stackrel{\text{any}}{\longleftrightarrow} X$ has zero coeff.

$$m{A}_{i}^{k}$$
: $m{Z}_{i}$... $m{X}_{i+k-1}$ $m{Y}_{i+k-1}$ $m{Y}_{i+k}$ $m{B}_{i}^{k+1}$: $m{+2i}$ $m{Z}_{i}$... $m{Z}_{i+k-1}$ $m{Y}_{i+k}$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

We can immediately show that $A^k = Z \stackrel{\text{any}}{\longleftrightarrow} X$ has zero coeff.

$$m{A}_{i}^{k}$$
: $m{Z}_{i}$... $m{X}_{i+k-1}$ $m{Y}_{i+k-1}$ $m{Y}_{i+k}$ $m{B}_{i}^{k+1}$: $m{+2i}$ $m{Z}_{i}$... $m{Z}_{i+k-1}$ $m{Y}_{i+k}$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

We can immediately show that $A^k = Z \stackrel{\text{any}}{\longleftrightarrow} X$ has zero coeff.

$$m{A}_{i}^{k}$$
: $m{Z}_{i}$... $m{X}_{i+k-1}$ $m{Y}_{i+k-1}$ $m{Y}_{i+k}$ $m{B}_{i}^{k+1}$: $m{+2i}$ $m{Z}_{i}$... $m{Z}_{i+k-1}$ $m{Y}_{i+k}$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

We can immediately show that $A^k = Z \stackrel{\text{any}}{\longleftrightarrow} X$ has zero coeff.

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

We can immediately show that $A^k = Z \stackrel{\text{any}}{\longleftrightarrow} X$ has zero coeff.

$$+2i q_{(Z\cdots X)_i} J_Y = 0$$

$$\rightarrow q_{(Z\cdots X)_i} = 0$$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

$$A^k = Z \cdots Y$$
 has zero coeff. $Z \cdots Y$
 \therefore Consider $B^{k+1} = Z \cdots ZX$ $\frac{X}{-2i \ Z \cdots Z \ X}$

$$A^k = Z \cdots Z$$
 has zero coeff. $Z \cdots Z$
 \therefore Consider $B^{k+1} = Z \cdots YX$ $+2i \ Z \cdots Y X$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

$$A^k = Z \cdots Y$$
 has zero coeff.

$$::$$
 Consider $\mathbf{B}^{k+1} = Z \cdots Z X$

$$Z \cdots Y$$

$$\therefore \text{ Consider } \boldsymbol{B}^{k+1} = Z \cdots ZX \quad \frac{X \quad X}{-2i \quad Z \quad \cdots \quad Z \quad X} \quad \frac{Z \quad ?}{Z \quad \cdots \quad Z \quad X}$$

$$\frac{Z}{Z}$$
 ?

$$A^k = Z \cdots Z$$
 has zero coeff.

$$\mathbf{C}$$
: Consider $\mathbf{B}^{k+1} = Z \cdots YX$

$$Z \cdots Z$$

$$\because \mathsf{Consider}\, \boldsymbol{B}^{k+1} = Z \cdots YX \quad \frac{X \quad X}{+2i \quad Z \quad \cdots \quad Y \quad X}$$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

$$A^k = Z \cdots Y$$
 has zero coeff.

$$\therefore$$
 Consider $\mathbf{B}^{k+1} = Z \cdots ZX$

$$Z \cdots Y$$

$$\therefore \text{ Consider } \boldsymbol{B}^{k+1} = Z \cdots ZX \quad \frac{X \quad X}{-2i \quad Z \quad \cdots \quad Z \quad X} \quad \frac{Z \quad ?}{Z \quad \cdots \quad Z \quad X}$$

$$\frac{Z}{Z} \cdot \cdot \cdot Z X$$

$$A^k = Z \cdots Z$$
 has zero coeff.

$$:: Consider \mathbf{B}^{k+1} = Z \cdots YX$$

$$Z \cdots Z$$

$$\therefore \text{ Consider } \boldsymbol{B}^{k+1} = Z \cdots YX \quad \frac{X \quad X}{+2i \quad Z \quad \cdots \quad Y \quad X} \quad \frac{Z \quad ?}{Z \quad \cdots \quad Y \quad X}$$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

$$A^k = Z \cdots Y$$
 has zero coeff.

$$::$$
 Consider $\mathbf{B}^{k+1} = Z \cdots ZX$

$$Z \cdots Y$$

$$\therefore \text{ Consider } \boldsymbol{B}^{k+1} = Z \cdots ZX \quad \frac{X \quad X}{-2i \quad Z \quad \cdots \quad Z \quad X} \quad \frac{Z \quad ?}{Z \quad \cdots \quad Z \quad X}$$

$$\frac{Z}{Z} \cdot \cdot \cdot Z X$$

$$A^k = Z \cdots Z$$
 has zero coeff.

$$::$$
 Consider $\mathbf{B}^{k+1} = Z \cdots YX$

$$Z \cdots Z$$

$$\frac{Z}{Z} \cdot \cdot \cdot \cdot Y \cdot X$$

$$q_{{m A}_i^k}=0$$
 if ${m A}^k=Z\cdots$

Proof: $A^k = XX \cdots, XI \cdots$ case

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

$$A^k = XX \cdots X$$
 has zero coeff.

$$\therefore \text{ Consider } \mathbf{B}^{k+1} = XX \cdots ZY \xrightarrow{+2i \ X \ X \ \cdots \ Z \ Y} \xrightarrow{\frac{Y \ Y}{X} \ \frac{X}{X} \cdots \ Z \ Y}$$

$$A^k = XI \cdots X$$
 has zero coeff. $X \ I \ \cdots \ X$ \bigotimes ? $\cdots \ Z \ Y$

$$\therefore \mathsf{Consider}\, \boldsymbol{B}^{k+1} = XI \cdots ZY \quad \frac{Y \quad Y}{+2i \quad X \quad I \quad \cdots \quad Z \quad Y} \quad \frac{X \quad X}{X \quad I \quad \cdots \quad Z \quad Y}$$

$$X \quad I \quad \cdots \quad X \quad Y \quad Y$$

$$+2i \quad X \quad I \quad \cdots \quad Z \quad Y$$

$$\bigotimes$$
 ? ... Z

Proof: $A^k = XX \cdots, XI \cdots$ case

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

$$A^k = XX \cdots X$$
 has zero coeff.

$$\therefore \text{ Consider } \mathbf{B}^{k+1} = XX \cdots ZY \xrightarrow{+2i \ X \ X \ \cdots \ Z \ Y} \xrightarrow{\frac{Y \ Y}{X} \ \frac{X \ X}{X \ \cdots \ Z \ Y}}$$

$$X \quad X \quad \cdots \quad X \qquad \qquad \bigotimes \quad ? \quad \cdots \quad Z \quad Y$$

$$? \cdots Z Y$$

$$A^k = XI \cdots X$$
 has zero coeff. $X \ I \ \cdots \ X$ \bigotimes ? $\cdots \ Z \ Y$

$$:: Consider \mathbf{B}^{k+1} = XI \cdots ZY$$

$$X I \cdots X$$

$$\because \mathsf{Consider}\, \boldsymbol{B}^{k+1} = XI \cdots ZY \quad \frac{Y \quad Y}{+2i \quad X \quad I \quad \cdots \quad Z \quad Y} \quad \frac{X \quad X}{X \quad I \quad \cdots \quad Z \quad Y}$$

$$q_{A_i^k} = 0$$
 if $A^k = XX \cdots, XI \cdots$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

 $A^k = XY \cdots X$ has zero coeff.

 \therefore Consider $\mathbf{B}^{k+1} = XY \cdots ZY$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

 $A^k = XY \cdots X$ has zero coeff.

 \therefore Consider $\mathbf{B}^{k+1} = XY \cdots ZY$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

 $A^k = XY \cdots X$ has zero coeff.

 \therefore Consider $\mathbf{B}^{k+1} = XY \cdots ZY$

$$+2i q_{(XY...X)_i} J_Y + 2i q_{(Z...ZY)_{i+1}} J_X = 0$$

Shown as zero on prev. slide

$$q_{A_i^k} = 0$$
 if $A^k = XY \cdots$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

zero coeff.

 $X \cdots$

Y...

Z...

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

X..

Y...

Z...

zero coeff.

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

$$XX \cdots XI \cdots XY \cdots$$

zero coeff.

$$XZ\cdots$$

Y...

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

 $XX\cdots$ $XI\cdots$ $XY\cdots$ $YY\cdots$ $YI\cdots$ $YX\cdots$ $YX\cdots$ $Z\cdots$ zero coeff.

 $XZ\cdots$

 $YZ\cdots$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

 $XX\cdots$ $XZX\cdots$ $XI\cdots$ $XZI\cdots$ $XY\cdots$ $XZY\cdots$ $YY\cdots$ $YZY\cdots$ $YI\cdots$ $YZI\cdots$ $YX\cdots$ $YZX\cdots$ $Z\cdots$ zero coeff.

 $XZZ\cdots$

 $YZZ\cdots$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

All the other

zero coeff.

$$XZZ\cdots ZZX$$

$$XZZ\cdots ZZY$$

$$YZZ\cdots ZZX$$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

Remaining coeffs. satisfy the following linear relations

$$\begin{split} q_{(XZZ\cdots ZZX)_i} &= \frac{J_X}{J_Y} q_{(YZZ\cdots ZZY)_{i+1}} = q_{(XZZ\cdots ZZX)_{i+2}} = \cdots \\ q_{(XZZ\cdots ZZY)_i} &= - q_{(YZZ\cdots ZZX)_{i+1}} = q_{(XZZ\cdots ZZY)_{i+2}} = \cdots \end{split}$$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

Remaining coeffs. satisfy the following linear relations

$$Q_{(XZZ\cdots ZZY)_{i}} = -q_{(YZZ\cdots ZZX)_{i+1}} = q_{(XZZ\cdots ZZY)_{i+2}} = \cdots$$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

Remaining coeffs. satisfy the following linear relations

$$Q_{(XZZ\cdots ZZY)_{i}} = -q_{(YZZ\cdots ZZX)_{i+1}} = q_{(XZZ\cdots ZZY)_{i+2}} = \cdots$$

We have obtained all the equations of $\{q_{A_i^k}\}$ corresponding to $\{r_{B_i^{k+1}}=0\}$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

Remaining coeffs. satisfy the following linear relations

$$q_{(XZZ\cdots ZZY)_{i}} = -q_{(YZZ\cdots ZZX)_{i+1}} = q_{(XZZ\cdots ZZY)_{i+2}} = \cdots$$

We have obtained all the equations of $\{q_{A_i^k}\}$ corresponding to $\{r_{\mathbf{B}_{\cdot}^{k+1}}=0\}$

Next: $\{r_{B_i^k} = 0\}$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

ex.)
$$k = 5$$
, $A^k = YZZZY$ (complicated)

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

ex.)
$$k = 5$$
, $A^k = YZZZY$ (complicated)

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

ex.)
$$k = 5$$
, $A^k = YZZZY$ (complicated)

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

ex.)
$$k = 5$$
, $A^k = YZZZY$ (complicated)

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

ex.)
$$k = 5$$
, $A^{k} = YZZZY$
 $+2i h_{X} q_{(YZZZY)_{i}}$ $+2i J_{Y} q_{(XZYY)_{i+1}} = 0$
 $+2i h_{X} q_{(XZZZX)_{i+1}}$ $-2i J_{X} q_{(XZYY)_{i+1}}$ $-2i J_{Y} q_{(YYZX)_{i+2}} = 0$
 $+2i h_{X} q_{(YZZZY)_{i+2}}$ $+2i h_{X} q_{(YYZX)_{i+2}} = 0$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

ex.)
$$k = 5$$
, $A^{k} = YZZZY$
 $+2i h_{X} q_{(YZZZY)_{i}}$
 $+2i J_{Y} q_{(XZYY)_{i+1}} = 0$

$$+2i h_{X} q_{(XZZZX)_{i+1}} -2i J_{X} q_{(XZYY)_{i+1}} -2i J_{Y} q_{(YYZX)_{i+2}} = 0$$

$$= J_{X}/J_{Y}q_{(YZZZY)_{i}}$$
 $+2i h_{X} q_{(YZZZY)_{i}} +2i h_{X} q_{(YYZX)_{i+2}} = 0$

$$= q_{(YZZZY)_{i}}$$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

ex.)
$$k = 5, A^{k} = YZZZY$$

 $+2i h_{X} q_{(YZZZY)_{i}}$
 $+2i J_{Y} q_{(XZYY)_{i+1}} = 0$

$$+2i h_{X} q_{(XZZZX)_{i+1}} -2i J_{X} q_{(XZYY)_{i+1}} -2i J_{Y} q_{(YYZX)_{i+2}} = 0 \times \frac{J_{Y}}{J_{X}}$$
 $+) +2i h_{X} q_{(YZZZY)_{i}} +2i h_{X} q_{(YYZX)_{i+2}} = 0$

$$= q_{(YZZZY)_{i}}$$
 $= 0$

$$+6i\,h_X\,q_{(YZZZY)_i}=0$$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

ex.)
$$k = 5, A^{k} = YZZZY$$

 $+2i h_{X} q_{(YZZZY)_{i}}$
 $+2i J_{Y} q_{(XZYY)_{i+1}} = 0$

$$+2i h_{X} q_{(XZZZX)_{i+1}} -2i J_{X} q_{(XZYY)_{i+1}} -2i J_{Y} q_{(YYZX)_{i+2}} = 0 \times \frac{J_{Y}}{J_{X}}$$
 $+) +2i h_{X} q_{(YZZZY)_{i}} +2i h_{X} q_{(YYZX)_{i+2}} = 0$

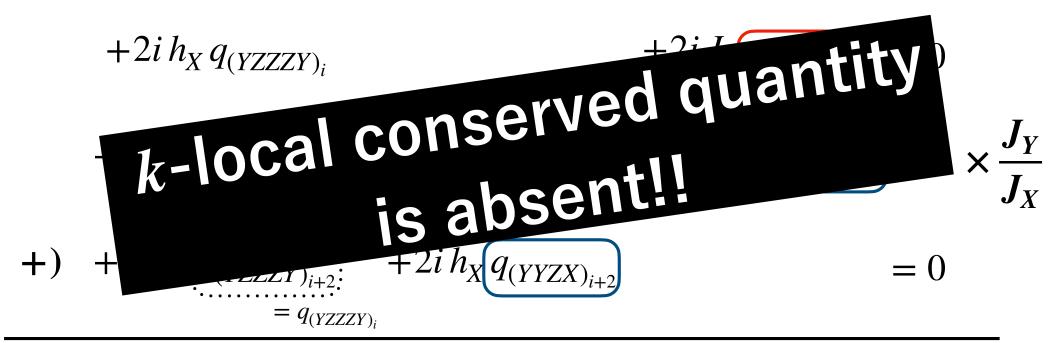
$$= q_{(YZZZY)_{i}}$$
 $= 0$

$$+6i\,h_X\,q_{(YZZZY)_i}=0$$

In this way, we get $q_{A_i^k} = 0$ for all remaining A^k if $(h_X, h_Y) \neq (0,0)$

$$H = \sum_{i=1}^{N} \left(J_X X_i X_{i+1} + J_Y Y_i Y_{i+1} + h_X X_i + h_Y Y_i + h_Z Z_i \right) \text{ with } \frac{J_X \neq 0, J_Y \neq 0}{(h_X, h_Y) \neq (0, 0)}$$

ex.)
$$k = 5, A^{k} = YZZZY$$



$$+6i\,h_X\,q_{(YZZZY)_i}=0$$

In this way, we get
$$q_{A_i^k} = 0$$
 for all remaining A^k if $(h_X, h_Y) \neq (0,0)$

Summary: S=1/2

Main Theorem [Yamaguchi, Chiba, Shiraishi arXiv:2411.02162] General spin-1/2 chains with symmetric n.n. interaction do not have nontrivial local conserved quantities, except for known integrable systems and their equivalents

Almost all systems in this class are non-integrable

0	$\sum_{i=1}^N h_{\rm Z} Z_i$		(trivial)
1	$\sum_{i=1}^{N} \begin{pmatrix} J_Z Z_i Z_{i+1} \\ +h_X X_i \\ +h_Z Z_i \end{pmatrix}$	$h_X = 0$	(trivial)
		$h_X \neq 0, h_Z = 0$	transverse field Ising
		$h_X \neq 0, h_Z \neq 0$	N [Chiba]
2	$\sum_{i=1}^{N}egin{pmatrix} J_{X}X_{i}X_{i+1}\ +J_{Y}Y_{i}Y_{i+1}\ +h_{X}X_{i}\ +h_{Z}Z_{i}\ +h_{Z}Z_{i} \end{pmatrix}$	$(h_X, h_Y) = (0,0)$	I XY
		$(h_X, h_Y) \neq (0,0)$	N our result

3	$\left(\ J_X X_i X_{i+1}\ ight)$	$J_X = J_Y = J_Z$			XXX (Heisenberg)
		$J_X = J_Y \neq J_Z$ (two are equal)	$(h_X, h_Y) = (0,0)$	1	XXZ
	$\sum_{i=1}^{N} \begin{vmatrix} A & I & I+I \\ +J_{Y}Y_{i}Y_{i+1} \\ +J_{Z}Z_{i}Z_{i+1} \\ +h_{X}X_{i} \end{vmatrix}$		$(h_X, h_Y) \neq (0,0)$	N	our result
	$\begin{pmatrix} +h_Z Z_i \\ +h_Z Z_i \end{pmatrix}$	J_X,J_Y,J_Z all different	$(h_X, h_Y, h_Z) = \vec{0}$	1	XYZ
			$(h_X, h_Y, h_Z) \neq \vec{0}$	N	our result

Contents

Introduction

```
Spin-1/2 systems
Result
Proof preliminary
Proof idea
Proof
```

Spin-1 systems

Discussion

Model & Result Spin-1 bilinear-biquadratic chain

$$H = \sum_{i=1}^{N} J_1 \left(\boldsymbol{S}_i \cdot \boldsymbol{S}_{i+1} \right) + J_2 \left(\boldsymbol{S}_i \cdot \boldsymbol{S}_{i+1} \right)^2$$
 Including AKLT $(J_2 = J_1/3)$ and Heisenberg $(J_2 = 0)$ Integrable: $J_1 = 0, \pm J_2$

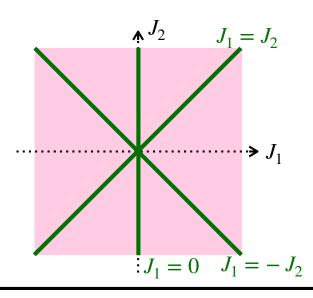
Model & Result

Spin-1 bilinear-biquadratic chain

$$H = \sum_{i=1}^{N} J_1 \left(S_i \cdot S_{i+1} \right) + J_2 \left(S_i \cdot S_{i+1} \right)^2$$
 Including AKLT $(J_2 = J_1/3)$ and Heisenberg $(J_2 = 0)$ Integrable: $J_1 = 0, \pm J_2$

Main Theorem [Park, Lee 2410.23286] [Hokkyo, Yamaguchi, Chiba 2411.04945]

It is **non-integrable**, except for known integrable systems (do not have nontrivial local conserved quantities)



- Integrable (already known)
- Non-integrable (proven here)

Model & Result

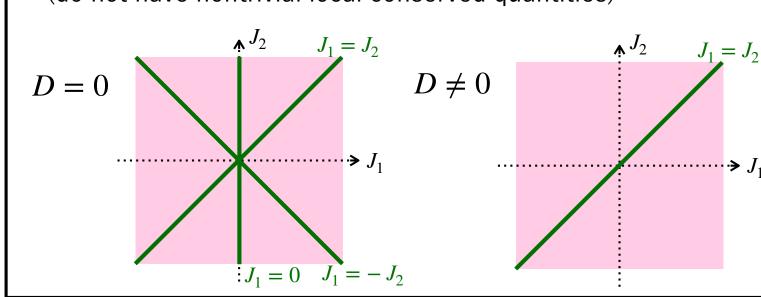
Spin-1 bilinear-biquadratic chain

$$H = \sum_{i=1}^{N} J_1 \left(\boldsymbol{S}_i \cdot \boldsymbol{S}_{i+1} \right) + J_2 \left(\boldsymbol{S}_i \cdot \boldsymbol{S}_{i+1} \right)^2 + D \left(\boldsymbol{S}_i^z \right)^2$$
Including AKLT $(J_2 = J_1/3)$ and Heisenberg $(J_2 = 0)$

Integrable: $J_1 = 0, \pm J_2$

Main Theorem [Park, Lee 2410.23286] [Hokkyo, Yamaguchi, Chiba 2411.04945]

It is **non-integrable**, except for known integrable systems (do not have nontrivial local conserved quantities)



Integrable (already known)

 $\rightarrow J_1$

Non-integrable (proven here)

In non-integrability proof, basis choice is important!

In non-integrability proof, basis choice is important!

The extension to spin-1 systems such as the AKLT model [55] looks not straightforward since the rule of the product of spin-1 operators is more complicated than the case of spin-1/2.

[Shiraishi (2019)]

In non-integrability proof, basis choice is important!

Basis (for 3 x 3 matrix) is desired to

- have simple commutation relations
- describe the model Hamiltonian simply

In non-integrability proof, basis choice is important!

Basis (for 3 x 3 matrix) is desired to

- have simple commutation relations
- describe the model Hamiltonian simply

We have found a basis that satisfies both

$$E^{0} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad E^{+1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

$$E^{-1} = (E^{+1})^{\dagger},$$

$$F^{0} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad F^{+1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}, \quad F^{+2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$F^{-1} = (F_{+1})^{\dagger}, \qquad F^{-2} = (F^{+2})^{\dagger}.$$

Commutator table

$\begin{bmatrix} b \\ a \end{bmatrix}$	E_{+1}	E_0	E_{-1}	F_{+2}	F_{+1}	F_0	F_{-1}	F_{-2}
$ E_{+1} $	0	$-E_{+1}$	$+E_0$	0	$-2F_{+2}$	$-3F_{+1}$	$+F_0$	$+F_{-1}$
$oxed{E_0}$	$ +E_{+1} $	0	$-E_{-1}$	$+2F_{+2}$	$+F_{+1}$	0	$-F_{-1}$	$-2F_{-2}$
$\left E_{-1} ight $	$-E_0$	$+E_{-1}$	0	$-F_{+1}$	$-F_0$	$+3F_{-1}$	$+2F_{-2}$	0
$oxed{F_{+2}}$	0	$-2F_{+2}$	$+F_{+1}$	0	0	0	$-E_{+1}$	$+E_0$
$oxed{F_{+1}}$	$+2F_{+2}$	$-F_{+1}$	$+F_0$	0	0	$-3E_{+1}$	$+E_0$	$-E_{-1}$
$oxed{F_0}$	$+3F_{+1}$	0	$-3F_{-1}$	0	$+3E_{+1}$	0	$-3E_{-1}$	0
F_{-1}	$-F_0$	$+F_{-1}$	$-2F_{-2}$	$+E_{+1}$	$-E_0$	$+3E_{-1}$	0	0
$oxed{F_{-2}}$	$-F_{-1}$	$+2F_{-2}$	0	$-E_0$	$+E_{-1}$	0	0	0

Commutator table

$\begin{bmatrix} b \\ a \end{bmatrix}$	E_{+1}	E_0	E_{-1}	F_{+2}	F_{+1}	F_0	F_{-1}	F_{-2}
$oxed{E_{+1}}$	0	$-E_{+1}$	$+E_0$	0	$-2F_{+2}$	$-3F_{+1}$	$+F_0$	$+F_{-1}$
$ig E_0$	$ +E_{+1} $	0	$-E_{-1}$	$+2F_{+2}$	$+F_{+1}$	0	$-F_{-1}$	$-2F_{-2}$
$\left E_{-1} ight $	$-E_0$	$+E_{-1}$	0	$-F_{+1}$	$-F_0$	$+3F_{-1}$	$+2F_{-2}$	0
$oxed{F_{+2}}$	0	$-2F_{+2}$	$+F_{+1}$	0	0	0	$-E_{+1}$	$+E_0$
$oxed{F_{+1}}$	$ +2F_{+2} $	$-F_{+1}$	$+F_0$	0	0	$-3E_{+1}$	$+E_0$	$-E_{-1}$
$oxed{F_0}$	$+3F_{+1}$	0	$-3F_{-1}$	0	$+3E_{+1}$	0	$-3E_{-1}$	0
$oxed{F_{-1}}$	$-\overline{F_0}$	$+\overline{F}_{-1}$	$-2F_{-2}$	$+E_{+1}$	$-E_0$	$+3E_{-1}$	0	0
F_{-2}	$-\overline{F}_{-1}$	$+2F_{-2}$	0	$-E_0$	$+E_{-1}$	0	0	0

Only single terms appear

Commutator table

$\begin{bmatrix} b \\ a \end{bmatrix}$	E_{+1}	E_0	E_{-1}	F_{+2}	F_{+1}	F_0	F_{-1}	F_{-2}
$ E_{+1} $	0	$-E_{+1}$	$+E_0$	0	$-2F_{+2}$	$-3F_{+1}$	$+F_0$	$+F_{-1}$
$ig E_0$	$ +E_{+1} $	0	$-E_{-1}$	$+2F_{+2}$	$+F_{+1}$	0	$-F_{-1}$	$-2F_{-2}$
$\left E_{-1} ight $	$-E_0$	$+E_{-1}$	0	$-F_{+1}$	$-F_0$	$+3F_{-1}$	$ +2F_{-2} $	0
$oxed{F_{+2}}$	0	$-2F_{+2}$	$+F_{+1}$	0	0	0	$-E_{+1}$	$+E_0$
$oxed{F_{+1}}$	$ +2F_{+2} $	$-F_{+1}$	$+F_0$	0	0	$-3E_{+1}$	$+E_0$	$-E_{-1}$
$oxed{F_0}$	$+3F_{+1}$	0	$-3F_{-1}$	0	$+3E_{+1}$	0	$-3E_{-1}$	0
$oxed{F_{-1}}$	$-F_0$	$+F_{-1}$	$-2F_{-2}$	$+E_{+1}$	$-E_0$	$+3E_{-1}$	0	0
$oxed{F_{-2}}$	$-F_{-1}$	$+2F_{-2}$	0	$-E_0$	$+E_{-1}$	0	0	0

Only single terms appear

$$H = \sum_{i} (J_{1} - J_{2}/2) \left(E_{i}^{0} E_{i+1}^{0} + E_{i}^{+1} E_{i+1}^{-1} + E_{i}^{-1} E_{i+1}^{+1} \right)$$
$$+ J_{2}/6 \left(F_{i}^{0} F_{i+1}^{0} + 3F_{i}^{+1} F_{i+1}^{-1} + 3F_{i}^{-1} F_{i+1}^{+1} + 6F_{i}^{+2} F_{i+1}^{-2} + 6F_{i}^{-2} F_{i+1}^{+2} \right) + D/3 F_{i}^{0}$$

The bilinear-biquadratic Hamiltonian is described simply

Contents

Introduction

```
Spin-1/2 systems
Result
Proof preliminary
Proof idea
Proof
```

Spin-1 systems

Discussion

Other recent progress

Non-integrability proof is extended just now

- higher dimensional systems (general $d \ge 2$)

```
d-dim. transverse-field Ising [Chiba (coming soon)] d-dim. XY / Heisenberg [Shiraishi, Tasaki (coming soon)]
```

- higher spin systems (general $S \ge 3/2$) [Hokkyo, Yamaguchi, Chiba (in prep.)]

- bosonic systems

[Yamaguchi (in prep.)]

Not yet

Not yet

Proving $\{q_{A_i^k}=0\}$ for general k requires craftsmanship

Not yet

Proving $\{q_{A_i^k}=0\}$ for general k requires craftsmanship

Conjecture Related: [Grabowski, Mathieu] [Reshetikhin's condition] The **presence or absence of 3-local** conserved quantities is coincident with **that of** *k***-local** conserved quantities for **general** *k*

Not yet

Proving $\{q_{A_i^k}=0\}$ for general k requires craftsmanship

Conjecture Related:[Grabowski, Mathieu] [Reshetikhin's condition]

The **presence or absence of 3-local** conserved quantities is coincident with **that of** k**-local** conserved quantities for **general** k

≒ Partially integrable system does not exist

(with finite number of local conserved quantities)

Not yet

Proving $\{q_{A_i^k}=0\}$ for general k requires craftsmanship

Conjecture Related:[Grabowski, Mathieu] [Reshetikhin's condition]

The **presence or absence of 3-local** conserved quantities is coincident with **that of** k**-local** conserved quantities for **general** k

≒ Partially integrable system does not exist

(with finite number of local conserved quantities)

All studies to date support this Conj.

Not yet

Proving $\{q_{A_i^k}=0\}$ for general k requires craftsmanship

Conjecture Related:[Grabowski, Mathieu] [Reshetikhin's condition]

The **presence or absence of 3-local** conserved quantities is coincident with **that of** k**-local** conserved quantities for **general** k

≒ Partially integrable system does not exist

(with finite number of local conserved quantities)

All studies to date support this Conj.

Admitting this Conj., integrability test can be performed with a low-cost algorithm (on Ker of $[\bullet, H]$ in finite-dim. linear space)

Summary

Classification of integrability and non-integrability is given for general spin-1/2 chains with symmetric n.n. interaction and spin-1 bilinear-biquadratic chains

We prove that all systems are non-integrable, except for known integrable systems, which implies the ubiquitousness of non-integrability

Trivial local conserved quantities

Usually, non-integrable systems have H as the only local conserved quantity

However, some non-integrable systems have other k-local conserved quantities with k=1,2

The following is a complete list

$$H = \sum_{i=1}^{N} \left(J_X \left(X_i X_{i+1} - \left(\frac{h_Y}{h_X} \right)^2 Y_i Y_{i+1} \right) + h_X X_i + h_Y Y_i \right) ,$$

$$Q = \sum_{i=1}^{N} (-1)^{i} (h_{X}X_{i} + h_{Y}Y_{i})(h_{X}X_{i+1} + h_{Y}Y_{i+1})$$
 (54)

$$H = \sum_{i=1}^{N} (J_X(X_i X_{i+1} - Y_i Y_{i+1}) + J_Z Z_i Z_{i+1} + h_Z Z_i) ,$$

$$Q = \sum_{i=1}^{N} (-1)^{i} Z_{i} , \qquad (55)$$

result on spin-1/2 systems

Theorem 2. In the BLBQ model (1) not satisfying Eq. (2), k-local conserved quantities with $k \leq N/2$ are restricted to linear combinations of the following:

- (i) its own Hamiltonian: H,
- (ii) the total magnetization in the z direction: $M_z = \sum_{i=1}^{N} S_i^z$,
- (iii) the total magnetizations in the x and y directions: M_x and M_y , if D = 0 holds,
- (iv) the staggered quadratic spins:

$$\sum_{i=1}^{N} (-1)^{i} (S_{i}^{z})^{2} ,$$

$$\sum_{i=1}^{N} (-1)^{i} ((S_{i}^{x})^{2} - (S_{i}^{y})^{2}) ,$$

$$\sum_{i=1}^{N} (-1)^{i} (S_{i}^{x} S_{i}^{y} + S_{i}^{y} S_{i}^{x}) ,$$
(3)

if $J_1 = 0$ holds and N is even.